INFILTRATION ON A STRIP IN THE PRESENCE OF
AN INCLINED IMPERMEABLE HORIZON

I. I. Kulabukhova

The author examines the effect of infiltration, acting on a strip, on the ground water level
for unbounded and semibounded one-dimensional flow models, when the soil is homogeneous
and the impermeable horizon has a slight tilt.

An unbounded uniform flow with normal depth hj, on which from a certain instant of time t = 0 infil-
tration of intensity &g, acting on a strip perpendicular to the direction of flow is superimposed, is considered
in relation to a homogeneous soil with a small inclination of the impermeable horizon i. The problem is
to determine the ground water head created by this infiltration. Assuming that the flow is one-dimensional
we can write the Boussinesq equation for the head H [1].
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g(z) =0 (z <y, x> )

Here, k is the permeability, u the free porisity, and x the horizountal coordinate.

The problem of one-dimensional percolation without a pressure gradient in the presence of an in-
clined impermeable horizon was first studied by P. Ya. Polubarinova-Kochina [1]. As distinct from the
problems cousidered in [1], the present study takes into account infiltration on a strip and adopts a some-

what differeat approach to the linearization of Eq. (1).
The relation between the head and the flow depth h is expressed as

h=H-+4+ iz
Going over from H to h in Eq. (1) with subsequent linearization leads to the equation

oh kW 3h ik oh &)
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(h' is the averaged flow depth) which after the substitutions
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u(z, 1) = [W(z,v) — hy] exp(— az + a’1)

takes the form
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We find the solution of Eq. (3) satisfying the initial condition
u(x,0) = 0. The form of this solution in quadratures is as follows [2]:
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We write the results of evaluating the integral

z, — & + 20 (T — T1)
I:Ser dt:
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as follows:
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Here, we have introduced the notation:
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Now, using Egs. (2), (4), and (5), we determine the ground water head Ah = h — h; on different intervals
of variation of x:

2 ay, Ab =1yl — I,y
7K EK L, Ab= Yowe{l1,e — Ia,1) (6)

> @y, Ab=Ywlys — L)

Letting t tend to infinity, we note that the depression curve tends to a certain limiting position every-
where except for a region infinitely remote downstream (x — «), where the nonsteady process continues.

As t - =, Egs. (6) take the form
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If in (7) x < 27, then
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At these values of x, the flow must be

oH .
Q=—k 9z h=klho—}—80(zg——x1)‘

As compared with the original flow, it has changed by an amount equal to the total infiltration €4(x, —
Xl)n

We introduce the new variable

£ z — 207
T o2vVT

Then Eq. (7) takes the form

€0 (Z2 — 21)

Ah = o erfc £

and £ may take any values. Setting £ = ¢, we obtain a system

x — 207

2 Ve

which represents sections moving along the x axis carrying constant values of the flow depth. Geometric-
ally, these constitute a family of curves in the (x,7) plane with the property that along each of them a
constant value of the function h(x,T) is preserved. It is easy to determine the velocity of these sections:
dr ik BR O\ ik
=g =t () =

We will now consider the ground water head in a semibounded bed with infiltration on a strip.

In this case, the solution of Eq. (1) must clearly satisfy not ouly the initial but also the boundary
condition, which we take in the following form:h(0,t) = h,.

However, on going over to the function u(x,7) we have Eq. (3), which may be written in the form

du 0*u
T = O

and the two conditions

u(z, 0)=0 8)
u(0, 1) =20 9

We continue the region of definition of u(x,7) onto the other x semiaxis,assuming that condition (8)
is satisfied there too. In this auxiliary region of definition we select §(x,7) so that condition (9) is satisfied.
We achieve this by setting

wo exp (— oz -F a'T), LT T
8 (z, T) = { — woexp (az -} a’t), — T L — 11
0, z E [21, 2], T E [— 22, — 3]

Thus, the problem is reduced to the study of the flow in an unbounded bed, and in the region in
question the unbounded and semibounded flows coincide.

In integral form the solution of the problem is written
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As a result of evaluating the integral
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We now write out the equations for Ah. There are two possible cases: a) the flow is bounded above
(0 =x = «); b) the flow is bounded below (—w < x = 0):
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As t —«, Eqs. (10) may be rewritten as follows: 0 = x =x;
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As t - o, we obtain expressions for the limiting value of Ah:
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In view of the linearity of the starting equation, using the solutions obtained, we can determine Ah
when the infiltration on a strip is specified as a piece-wise-constant function of time, and, moreover, take
into account the effect on the flow of the infiltration from several infiltration strips.
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